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Abstract. The subject of this PhD thesis is the study of photonic crystal 
waveguides that incorporate discontinuities or structural fabrication-induced 
variations. For the numerical study of these devices the mode matching (MM) 
method is proposed. The comparison of the MM method with the couple mode 
theory (CMT) showed that the CMT can provide only a first approximation to 
the perturbation-induced scattering in photonic crystal waveguides. 
Additionally it was investigated the propagation of optical pulses in photonic 
crystal waveguides near the edge of the guided band, where the group velocity 
of the pulse is minimized.  
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1   Introduction 

In this thesis, we demonstrate the effectiveness of a method based on Plane Wave 
Expansion (PWE)1 and Mode Matching (MM)2 in the analysis of PCW 
discontinuities. In order to apply the MM technique, the modes corresponding to a 
given frequency ω must be calculated including the evanescent modes with complex 
propagation constants β. By applying the PWE to the wave equation1, one may 
determine the various values of ω corresponding to a given β. However, in contrast to 
conventional, constant cross-section waveguides, where β for the evanescent modes 
lie on the imaginary axis, in PCWs β may lie on the entire complex plane. To avoid 
sweeping the entire complex plane, an alternative formulation of the PWE is used for 
the first time, allowing the determination of the propagation constant and the 
distribution of the guided and the evanescent modes at a given frequency. It is shown 
that the MM method can provide accurate results without requiring significant 
memory resources and computational time. In the framework of the MM method, 
whenever a discontinuity is encountered inside a waveguide, we attempt to match the 
field expressed in terms of the waveguide modes to the modal fields of the 
discontinuity. This allows the computation of the reflection and transmission 
coefficients of each guided waveguide mode. The method is also applied to the study 
of fabrication induced disorder by calculating the performance degradation of a PCW 
in terms of the scattering loss and it is shown that MM can handle small perturbations 
without excessive computational time requirements. 



The propagation of both linear and nonlinear pulses is numerically investigated in 
single-mode 2-D PCWs near the band edge (where the delay is increased). Both 
triangular and rectangular lattice waveguides are assumed. Calculations for 1-cm-long 
PCWs reveal that, for 1-ns delay, linear pulses exhibit large broadenings for data rates 
just above 10 Gb/s. On the other hand, using either bright or dark soliton pulses may 
lead to significant improvement provided that the optical losses are kept low. It is 
numerically shown that optical solitons may be used to achieve 1-ns delay in 1-cm-
long PCWs, at much higher data rates (40 Gb/s and even 100 Gb/s). Higher delays of 
the order of 5 ns at 10 Gb/s can also be supported. 

Mode matching method 

In order to implement the MM method, one first needs to estimate the propagation 
constants β and the modal fields of the various cells of the structure under 
consideration4. Using Bloch’s theorem, the modes of a periodic dielectric structure 
along the z-direction can be written1 

 ( ) ( ) j ze β=E r u r  (1) 

 ( ) ( ) j ze β=H r v r  (2) 

where β is the propagation constant of the mode and u,v are periodic functions 

along the z direction. Defining βΨ  to be a four component vector comprising of 

the tangential parts ut and vt of u and v respectively, i.e.  
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one can write Maxwell’s equations in the following form (Ref. 3) 
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where the operators ̂A  and B̂  are defined by 
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The eigenvalues of the eigenproblem in (4) can be used to determine the 
propagation constants of both evanescent and guided modes of the structures while 
the eigenvectors determine their modal fields. 

Since the modes of the structure can be calculated, one can proceed to apply the 
MM technique. The field at each interface between adjacent cells must satisfy the 



continuity equations, i.e. the tangential fields at the left of a boundary must equal the 
tangential fields at the right of the boundary. At the i th cell the tangential magnetic 
field are written as: 

 

( ) ( )( ) ( )
1( ) ( ) ( ) ( )i i

m i m ij z z j z zi i i i i
t m tm m tm

m m

a e b eβ β−− − −′= +∑ ∑H h h
 

(7) 

where ( )i
tmh , and ( )i

tm
′h  are the tangential magnetic Bloch functions propagation 

constants of the mth forward mode and  the mth backward mode of the i th cell 
respectively. At each interface between two cells, the tangential fields must be 
continuous at the boundary z=zi . This implies: 
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one obtains a matrix equation relating the mode coefficients in cells i and i+1: 
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where vectors Ai= [a1
(i),…,aM

(i)]T, Bi= [b1
(i)…,bM

(i)]T contain the coefficients of the M 
forward and M backward modes of the i th cell. If the structure consists of many cells, 
one can relate the modal amplitudes at its input to the modal amplitudes of its output 
using the transfer matrix properties leading to the following equation: 
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Solving this equation one can calculate the modal amplitudes of the modes that are 
related to the power reflection and transmission of the device. 

 

Fig 1. Comparison of power reflection coefficient of the MM and the finite difference 
frequency domain (FDFD) methods for a) single, and b) triple defect rods inside a PCW. 

 
To compare the results of the MM method with the FDFD method, a sequence of 1 

and 3 defect rods with radius rd is placed inside a PC waveguide. Figures 1(a)-1(b) 
depict the power reflection coefficients calculated with the FDFD (dots) and the MM 
method (solid lines). As observed in figure 1, there is a very good agreement between 



the two methods in terms of the power reflection coefficients and this verifies the 
accuracy of the MM method. 

Application of MM in the study of fabrication imperfections 

 
Fig 2. Power loss (expressed in dB/mm) due to scattering obtained considering 100 perturbed 
PCWs assuming a) ∆=1nm  and b) 5nm. 

In this section the MM method will be applied in the calculation of optical losses 
due to scattering at fabrication imperfections in a PCW. Towards this end a number of 

PCW cells will be considered having the centres ( ) ( ), ,i i i i i iz x z z x x′ ′ = + ∆ + ∆  of 

the rods slightly displaced with respect to the centres ( ),i iz x  of the rods of the ideal 

PCW and their radius i a ir r r′= + ∆  perturbed. For simplicity, the perturbations ∆zi, 

∆xi and ∆r i are independently selected from the samples of a uniform distribution 
inside [-∆, +∆]. It is deduced that although small deviations of 1nm do not introduce 
significant losses, the losses increase significantly for ∆=5nm exceeding 1dB/mm in 
this case. This is illustrated in figure 2 where a bar plot of the power losses of the 
samples is given and it is deduced that although for the majority of the samples the 
loss is close to the mean value, there are some samples with significantly higher loss.  

Accuracy of Coupled Mode Theory and Mode Matching Method  

In this section the accuracy of the two formulations of the CMT5 are used in the 
estimation of the amount of scattering due to fabrication-induced disorder. Depending 
on the type of orthogonality relations used, one may obtain two different formulations 
for the CMT: The IVG-CMT and the CCMT. To compare the accuracy of the 
methods a single defect rod is assumed inside a PCW. The defect rod radius rd was 
altered from 0 to 2ra, and the power reflectivity was calculated by the IVG-CMT, the 
CCMT, the MM and the conventional FDFD method. In figure 3, the power 
reflectivity for the four methods is plotted for various values of the ratio rd/ra. The 



MM method agrees very well with the FDFD method. However, both CMT 
formulations, although they roughly predict the shape of the curve, they do not 
provide accurate results. This is because in both formulations the field is written as a 
sum of the guided modes of the unperturbed waveguide and if the perturbation is not 
small, such an expansion is not an accurate approximation. In the region near the 
defect, the modes may differ significantly from the guided modes of the ideal PCW. 
In addition, the evanescent modes of the defect region are excited, and although they 
do not carry any power they alter the transmission and reflection properties of the 
system. 

 
 

 

Fig 3. Comparison of power reflectivity calculated by MM, FDFD, IVG-CMT and CCMT for a 
single defect rod radius rd inside a PCW. 

 
It is interesting to ascertain if at least the CMT formulations can be used to 

estimate the sensitivity ∆R≅(∂R/∂rd)∆rd of R for small perturbations ∆rd in the value 
of rd. Figure 4 depicts power reflectivity for the same structure as discussed before, 
assuming small variations of the order of 1% of the defect rod radius rd around 1.2ra. 
Due to the small variations the AV/FDFD is applicable in this case and has been used 
instead of the conventional FDFD. The fact that the AV/FDFD and the MM method 
produce the same results for / dR r∂ ∂  is a strong indication of their validity in the 

sensitivity analysis of fabrication induced geometric perturbations.  
On the other hand, the results of both CMTs again coincide, but not only do they 

underestimate the power reflection R but also the derivative / dR r∂ ∂ .  



 

Fig 4. Normalized electric/magnetic fields along the interface z=z1 for the device of figure 2a 
and rd=ra. 

Linear and Nonlinear Pulse Propagation In PCWs 

In this section, the propagation of both linear and nonlinear pulses is numerically 
investigated in single mode 2D PCWs near the band edge (where the delay is 
increased)6. Both triangular and rectangular lattice waveguides are assumed such as 
the ones depicted in figure 5.  

 
Fig 5. Examples of photonic crystal waveguides unit cells formed by a) removing a single rod from a 
square photonic lattice, b) inserting defect rods in a square lattice, c) removing a rod from a triangular 
lattice, d) inserting defect rods in a triangular lattice. 

 



 The propagation of optical pulses inside a PCW can be studied using the 
propagation equation7: 
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Equation (12) describes the pulse evolution A(z,T) as it propagates along the PCW 
assuming a frame of reference T=t-z/ve moving with the group velocity ve of the 
signal. The coefficient Γ is related to the optical losses which are caused either by 
disorder-induced scattering or by out-of-plane propagation losses. The function m(l) is 
defined by m(l)=mod(l,2) while the coefficient kl is the group velocity dispersion 
coefficient (for l=2) or a higher order dispersion coefficient (for l>2). These 
coefficients are calculated from the derivatives of the mode propagation constant k 
with respect to the frequency ω, i.e. 
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The group velocity ve is simply 
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The coefficient γ is the self phase modulation (SPM) coefficient and can be 
calculated using0: 
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The slow down factor S=c/ve, where c is the speed of light in vacuum, obtained for 
the waveguide structures of figure 5 is plotted in figure 6. There is a large increase in 
S, at wavelengths near the two band-edges of the guided mode. It is interesting to note 
that defect type waveguides, with rd=0.175a achieve higher slow down factors than 
hollow type waveguides (rd=0) of the same lattice type. 

 

Fig 6. Slow down factors for the guided mode of PCWs depicted in figure 5. 

 



As in the case of linear optical fibers, in a linear PCW (γ=0), it can be shown that 
an optical pulse having a Gaussian incident profile, A(0,T)=exp(-T2/2T0

2), remains 
Gaussian in shape and is broadened by a factor of: 
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where LD is the dispersion length 
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Ιgnoring higher order dispersion terms (kl=0 for l>2, the broadening factor can be 

estimated using (16). In figure 7 the broadening factor is plotted for the four PCWs in 
question, assuming Td=1ns and 5ns respectively, and 1cm long waveguides. The 
launch point is taken near the left band edge where the values of k2 are smaller. It is 
deduced that for Rb≅10Gb/s and Td=1ns, BFL is lower than 1.33 (corresponding to the 
limit for dispersion-induced broadening) only in the case of the defect-type triangular 
lattice PCW. This PCW can support 12Gb/s signal at this limit. For Td=5ns, the 
broadening factors are prohibitive, even for data rates slightly above 1Gb/s.  

 

Fig 7. Linear Broadening factor for hollow and defect-type PCW waveguide formed in either 
rectangular or triangular PC lattice at the left band edge when a) Td=1ns and b) Td=5ns. 

 
A similar behavior is observed when the launch wavelength corresponds to the 

right band of the guided band. Οptical soliton pulses may experience less dispersion-
induced broadening than linear pulses. To investigate the influence of higher order 
dispersion and optical loss in the stability of the soliton, one may numerically solve 
the propagation equation using the SSF method setting the suitable initial condition 
for bright and dark solitons respectively. For bright solitons one simply uses 
A(0,T)=P0

1/2sech(T/T0) as an initial conditions. Instead of using (16), the broadening 
factor BFNL at the nonlinear regime, is numerically calculated as: 
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where B3dB(L) is the numerically computed full width at half maximum of the 
envelope pulse A(L,t).  



 

Fig 8. Broadening factors for bright solitons propagation in various geometries of PCWs 
obtained at a specified delay of either a) Td=1ns for signals up to 100Gb/s and b) Td=5ns for 
signals up to 10Gb/s. 

 
The values of the broadening factor BFNL of a bright soliton, with respect to the 

bitrate are plotted in figure 8 (a) and (b) for Τd=1ns and Τd=5ns respectively. The 
PCW length was set to 1cm and optical losses were neglected. It is interesting to note 
that the broadening factor is much smaller than 1.1, implying a broadening of less 
than 10% for bitrates of up to 100Gb/s at 1ns delay. The broadening factors obtained 
are generally much better than the linear broadening factors of figure 7, and this 
implies that the use of optical solitons as information carriers can significantly 
improve the performance of the delay line. For delay Td=5ns, higher order dispersion 
has a greater degrading effect, limiting the bit rate to maximum value of 10Gb/s. 
However, compared to the linear case figure 7(b), this is still a significant 
improvement. 

In the case of dark soliton propagation the maximum bitrate is similar to bright 
solitons. However, the optical field is better confined near the right band-edge where 
dark soliton are supported. This means that dark solitons maybe more suitable 
information carriers in nanophotonic applications where the mode field confinement 
is an important issue. 

Optical losses can also affect the propagation of optical solitons. For a 10Gb/s 
bright soliton, at a specified delay of Td=1ns, it is seen that even for losses of up to 
1dB/mm, the optical pulse does not broaden significantly. However, as the data rate is 
increased, the influence of optical loss becomes much more critical. It is deduced that 
the optical loss must now be kept smaller than 0.1dB/mm in order to avoid pulse 
broadening beyond 30%.  

Conclusion  

The mode matching method has been applied in the study of PC-based waveguide 
discontinuities. The method is based in the expansion of the field in terms of the 
eigenmodes of the cells of the structure and their matching at the boundary interfaces. 
At a given frequency the modes are calculated by an alternative formulation of the 
plane wave expansion method. The MM method was verified by comparing it to 



FDFD and FDTD simulations for various structures. Compared to FDFD the MM 
method requires much less memory while compared to the FDTD it requires less 
computational time. 

The accuracy of two CMT formulations and the MM method for the estimation of 
the scattering due to geometric perturbations inside a PCW were investigated. This 
proves the applicability of MM in the analysis of PCW discontinuities especially for 
small perturbations. On the other hand, it was shown that the CMT can provide only a 
first approximation in the order of magnitude of the power scattering due to small 
perturbations.  

The possibility of achieving nanosecond order delays, near the band edges of 2D 
photonic crystal waveguides was numerically investigated. Linear pulse propagation 
was shown to be severely impaired by second order dispersion. In the nonlinear 
regime, both bright and dark optical soliton pulses can be used to provide nanosecond 
delays for optical signals up to 100Gb/s. Third and higher order dispersion was shown 
not to significantly affect the performance of the soliton delay line. The influence of 
optical loss was also investigated and it was numerically shown that high bit rate 
soliton signals require low loss in order to limit their broadening factor.  
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