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Abstract. The subject of this PhD thesis is the study of tphiz crystal

waveguides that incorporate discontinuities or cétmal fabrication-induced
variations. For the numerical study of these devite mode matching (MM)
method is proposed. The comparison of the MM methitkl the couple mode
theory (CMT) showed that the CMT can provide onlfjrst approximation to
the perturbation-induced scattering in photonic staly waveguides.
Additionally it was investigated the propagationagtical pulses in photonic
crystal waveguides near the edge of the guided,bahere the group velocity
of the pulse is minimized.
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1 Introduction

In this thesis, we demonstrate the effectiveness method based on Plane Wave
Expansion (PWE) and Mode Matching (MM) in the analysis of PCW
discontinuities. In order to apply the MM technigtlee modes corresponding to a
given frequency» must be calculated including the evanescent madthscomplex
propagation constants. By applying the PWE to the wave equatioone may
determine the various values®ofcorresponding to a givgh However, in contrast to
conventional, constant cross-section waveguidegreyh for the evanescent modes
lie on the imaginary axis, in PCWsmay lie on the entire complex plane. To avoid
sweeping the entire complex plane, an alternatvendilation of the PWE is used for
the first time, allowing the determination of theopagation constant and the
distribution of the guided and the evanescent madl@sgiven frequency. It is shown
that the MM method can provide accurate resultshaut requiring significant
memory resources and computational time. In thendwsork of the MM method,
whenever a discontinuity is encountered inside wegaide, we attempt to match the
field expressed in terms of the waveguide modesth®® modal fields of the
discontinuity. This allows the computation of theflection and transmission
coefficients of each guided waveguide mode. Thehatkts also applied to the study
of fabrication induced disorder by calculating treformance degradation of a PCW
in terms of the scattering loss and it is shown kil can handle small perturbations
without excessive computational time requirements.
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The propagation of both linear and nonlinear pulsasumerically investigated in
single-mode 2-D PCWs near the band edge (wheredéhey is increased). Both
triangular and rectangular lattice waveguides aseimed. Calculations for 1-cm-long
PCWs reveal that, for 1-ns delay, linear pulseshiixtarge broadenings for data rates
just above 10 Gb/s. On the other hand, using elihght or dark soliton pulses may
lead to significant improvement provided that th#tical losses are kept low. It is
numerically shown that optical solitons may be ugedchieve 1-ns delay in 1-cm-
long PCWs, at much higher data rates (40 Gb/s aed #00 Gb/s). Higher delays of
the order of 5 ns at 10 Gb/s can also be supported.

M ode matching method

In order to implement the MM method, one first neéal estimate the propagation
constantsfp and the modal fields of the various cells of theucture under
consideratioh Using Bloch’s theorem, the modes of a periodigladitric structure
along the z-direction can be writfen

E(r)=u(r)e"”” 1)
H(r) = v(r)e"” )
wherep is the propagation constant of the mode andare periodic functions
along the z direction. Defininb‘l’ﬂ> to be a four component vector comprising of
the tangential parts; andv; of u andv respectively, i.e.
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one can write Maxwell’s equations in the followiftym (Ref. 3)
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The eigenvalues of the eigenproblem in (4) can Beduto determine the
propagation constants of both evanescent and guidstes of the structures while
the eigenvectors determine their modal fields.

Since the modes of the structure can be calculateel,can proceed to apply the
MM technique. The field at each interface betwedja@ent cells must satisfy the



continuity equations, i.e. the tangential fieldgtet left of a boundary must equal the
tangential fields at the right of the boundary.thé i cell the tangential magnetic
field are written as:
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where hf;g and h{g) are the tangential magnetic Bloch functions pregiag

constants of them™ forward mode and thel” backward mode of thé" cell
respectively. At each interface between two cdlfe tangential fields must be
continuous at the boundazryz . This implies:

E (z)=E"(7) 8)
Hi(z)=H"(7) ©)

one obtains a matrix equation relating the modédficaants in cellsi andi+1:
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where vectord'=[a;,”,...,a"]", B'=[b,"...,0,"]" contain the coefficients of tHd
forward andVl backward modes of th& cell. If the structure consists of many cells,
one can relate the modal amplitudes at its inptihéomodal amplitudes of its output
using the transfer matrix properties leading toftilewing equation:
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Solving this equation one can calculate the modwgdldudes of the modes that are
related to the power reflection and transmissiothefdevice.
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Fig 1. Comparison of power reflection coefficient of th&M and the finite difference
frequency domain (FDFD) methods for a) single, Bhttiple defect rods inside a PCW.

To compare the results of the MM method with the=EDmethod, a sequence of 1
and 3 defect rods with radiug is placed inside a PC waveguide. Figures 1(a)-1(b)
depict the power reflection coefficients calculateith the FDFD (dots) and the MM
method (solid lines). As observed in figure 1, ghisra very good agreement between



the two methods in terms of the power reflectioeffioients and this verifies the
accuracy of the MM method.

Application of MM in the study of fabrication imperfections
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Fig 2. Power loss (expressed in dB/mm) due to scatterinigined considering 100 perturbed
PCWs assuming &y=1nm and b) 5nm.

In this section the MM method will be applied iretbalculation of optical losses
due to scattering at fabrication imperfections BGVN. Towards this end a number of

PCW cells will be considered having the cent(e, X)=(z+A z, X+ A X of

the rods slightly displaced with respect to thetICEET(Zi ) X) of the rods of the ideal

PCW and their radiuxi’= r, + Ar, perturbed. For simplicity, the perturbatiofs,

Ax; and Ar; are independently selected from the samples ofiforin distribution
inside [A, +A]. It is deduced that although small deviationsloin do not introduce
significant losses, the losses increase signifigdot A=5nm exceeding 1dB/mm in
this case. This is illustrated in figure 2 wherba plot of the power losses of the
samples is given and it is deduced that althoughhfe majority of the samples the
loss is close to the mean value, there are somplsamith significantly higher loss.

Accuracy of Coupled Mode Theory and Mode Matching Method

In this section the accuracy of the two formulasimf the CMT are used in the
estimation of the amount of scattering due to faiidon-induced disorder. Depending
on the type of orthogonality relations used, ong wiatain two different formulations
for the CMT: The IVG-CMT and the CCMT. To compareetaccuracy of the
methods a single defect rod is assumed inside a.PC\ defect rod radiusg was
altered from O to £, and the power reflectivity was calculated by IM&-CMT, the
CCMT, the MM and the conventional FDFD method. igufe 3, the power
reflectivity for the four methods is plotted forri@us values of the ratioy/r,. The



MM method agrees very well with the FDFD method. wdwer, both CMT
formulations, although they roughly predict the mheof the curve, they do not
provide accurate results. This is because in bmtimdilations the field is written as a
sum of the guided modes of the unperturbed wavegaidl if the perturbation is not
small, such an expansion is not an accurate appedian. In the region near the
defect, the modes may differ significantly from tp¢ided modes of the ideal PCW.
In addition, the evanescent modes of the defedbmegye excited, and although they
do not carry any power they alter the transmissiod reflection properties of the
system.
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Fig 3. Comparison of power reflectivity calculated by MWDFD, IVG-CMT and CCMT for a
single defect rod radiug inside a PCW.

It is interesting to ascertain if at least the CNbrmulations can be used to
estimate the sensitivitkR=(0R/0r4)Ar4 of R for small perturbationary in the value
of rg. Figure 4 depicts power reflectivity for the sastaucture as discussed before,
assuming small variations of the order of 1% ofdeéect rod radiusy around 1.2..
Due to the small variations the AV/FDFD is applieaim this case and has been used
instead of the conventional FDFD. The fact that AN¢FDFD and the MM method
produce the same results foR/0r, is a strong indication of their validity in the

sensitivity analysis of fabrication induced geonegperturbations.
On the other hand, the results of both CMTs againcide, but not only do they

underestimate the power reflectiBrbut also the derivativéR/ ot .
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Fig 4. Normalized electric/magnetic fields along theeifaicez=z, for the device of figure 2a
andrg=r..

Linear and Nonlinear Pulse Propagation In PCWs

In this section, the propagation of both linear aodlinear pulses is numerically
investigated in single mode 2D PCWs near the badge gwhere the delay is
increased) Both triangular and rectangular lattice wavegsidee assumed such as
the ones depicted in figure 5.
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Fig 5. Examples of photonic crystal waveguides unitscéirmed by a) removing a single rod from a
square photonic lattice, b) inserting defect radsisquare lattice, ¢) removing a rod from a tridag
lattice, d) inserting defect rods in a trianguktice.



The propagation of optical pulses inside a PCW benstudied using the
propagation equatién
(0A T oy K O'A 2n
J(az+2Aj+|;J I!aTIerlAJA 0 (12)
Equation (12) describes the pulse evolu#gnT) as it propagates along the PCW
assuming a frame of referendet-z've moving with the group velocity, of the
signal. The coefficient” is related to the optical losses which are caustter by
disorder-induced scattering or by out-of-plane piggiion losses. The function(l) is
defined bym(l)=mod(,2) while the coefficienk, is the group velocity dispersion
coefficient (for 1I=2) or a higher order dispersion coefficient (fbr2). These
coefficients are calculated from the derivativestted mode propagation constdnt
with respect to the frequenay; i.e.

d™k
K = do™|
o=y

(13)

The group velocity, is simply
The coefficienty is the self phase modulation (SPM) coefficient arah be
calculated usiry

2w, 4
y= a \'/[dSE‘NL|eO| (15)
The slow down factoB=c/ve, wherec is the speed of light in vacuum, obtained for
the waveguide structures of figure 5 is plottedignre 6. There is a large increase in
S at wavelengths near the two band-edges of thaeduinode. It is interesting to note
that defect type waveguides, witl=0.17% achieve higher slow down factors than
hollow type waveguides {=0) of the same lattice type.

Rectangular Lattice Triangular Lattice
_C'_I'/ZO - /‘,:0

- 1000 4 —o—r,=0,175a ——r,=0,175a

8

S

S5

£ 100+

]

A o

= | /

o =}

@ 104 ‘\ //
g

R

13 14 15 16 17 18 19
Wavelength (um)

Fig 6. Slow down factors for the guided mode of PCWs depliin figure 5.



As in the case of linear optical fibers, in a liIn@LCW §=0), it can be shown that
an optical pulse having a Gaussian incident profi® T)=exp(T%/2Ty’), remains
Gaussian in shape and is broadened by a factor of:

2 1/2
BFL(2)=(1+(2/ ) ) (16)
wherelL is the dispersion length
Lo =To /|k)| (17)

Ignoring higher order dispersion ternks=Q for 1>2, the broadening factor can be
estimated using (16). In figure 7 the broadenirgdais plotted for the four PCWs in
guestion, assumings=1ns and 5ns respectively, and 1cm long waveguitibs.
launch point is taken near the left band edge wtieevalues ok, are smaller. It is
deduced that forR,=10Gb/s andly=1ns,BF, is lower than 1.33 (corresponding to the
limit for dispersion-induced broadening) only iretbase of the defect-type triangular
lattice PCW. This PCW can support 12Gb/s signathé limit. For T¢=5ns, the
brcga;dening factors are prohibitive, even(bf)or datas slightly above 1Gb/s.
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Fig 7. Linear Broadening factor for hollow and defectaypCW waveguide formed in either
rectangular or triangular PC lattice at the leftdadge when a);=1ns and bY4=5ns.

A similar behavior is observed when the launch ervgth corresponds to the
right band of the guided ban@ptical soliton pulses may experience less dispefsio
induced broadening than linear pulses. To invesidle influence of higher order
dispersion and optical loss in the stability of gwiton, one may numerically solve
the propagation equation using the SSF methodhgetiie suitable initial condition
for bright and dark solitons respectively. For htigsolitons one simply uses
A(0,T)=P,*sech{/To) as an initial conditions. Instead of using (1) broadening
factor BRy, at the nonlinear regime, is numerically calculaasd

L
BF, ()= et 18)
Byus (0)
where Bsgg(L) is the numerically computed full width at half xiaum of the
envelope pulsé(L,t).
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Fig 8. Broadening factors for bright solitons propagationvarious geometries of PCWs
obtained at a specified delay of eitherTgrlns for signals up to 100Gb/s andTh¥5ns for
signals up to 10Gb/s.

The values of the broadening factor\BFof a bright soliton, with respect to the
bitrate are plotted in figure 8 (a) and (b) fB=1ns and74=5ns respectively. The
PCW length was set to 1cm and optical losses wegéeated. It is interesting to note
that the broadening factor is much smaller than ilaplying a broadening of less
than 10% for bitrates of up to 100Gb/s at 1ns de€ldée broadening factors obtained
are generally much better than the linear broadeféactors of figure 7, and this
implies that the use of optical solitons as infotiora carriers can significantly
improve the performance of the delay line. For @dlg&5ns, higher order dispersion
has a greater degrading effect, limiting the bterto maximum value of 10Gb/s.
However, compared to the linear case figure 7(b)s tis still a significant
improvement.

In the case of dark soliton propagation the maximhitrate is similar to bright
solitons. However, the optical field is better doefl near the right band-edge where
dark soliton are supported. This means that datkore maybe more suitable
information carriers in nanophotonic applicationsene the mode field confinement
is an important issue.

Optical losses can also affect the propagationpifcal solitons. For a 10Gb/s
bright soliton, at a specified delay ©§=1ns, it is seen that even for losses of up to
1dB/mm, the optical pulse does not broaden sigmitiy. However, as the data rate is
increased, the influence of optical loss becomeshmore critical. It is deduced that
the optical loss must now be kept smaller than B/dn in order to avoid pulse
broadening beyond 30%.

Conclusion

The mode matching method has been applied in thy stf PC-based waveguide
discontinuities. The method is based in the expensif the field in terms of the
eigenmodes of the cells of the structure and tinaitching at the boundary interfaces.
At a given frequency the modes are calculated bwlternative formulation of the
plane wave expansion method. The MM method wadiegrby comparing it to



FDFD and FDTD simulations for various structuresmared to FDFD the MM
method requires much less memory while comparethéoFDTD it requires less
computational time.

The accuracy of two CMT formulations and the MM hwoat for the estimation of
the scattering due to geometric perturbations exsidPCW were investigated. This
proves the applicability of MM in the analysis o€ discontinuities especially for
small perturbations. On the other hand, it was shthat the CMT can provide only a
first approximation in the order of magnitude o&tpower scattering due to small
perturbations.

The possibility of achieving hanosecond order delaear the band edges of 2D
photonic crystal waveguides was numerically ingzdgd. Linear pulse propagation
was shown to be severely impaired by second ordgretsion. In the nonlinear
regime, both bright and dark optical soliton pulsas be used to provide nanosecond
delays for optical signals up to 100Gb/s. Third higher order dispersion was shown
not to significantly affect the performance of taiton delay line. The influence of
optical loss was also investigated and it was nigally shown that high bit rate
soliton signals require low loss in order to litieir broadening factor.
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